Lower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections

نویسندگان

  • A. L. Brown
  • Frank Deutsch
  • V. Indumathi
  • Petar S. Kenderov
چکیده

A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection P M onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characterization is given of those normed linear spaces X such that the metric projection onto every one-dimensional subspace has a continuous C 0 (T) and L 1 (m) that have this property are determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower semicontinuity for parametric set-valued vector equilibrium-like problems

A concept of weak $f$-property for a set-valued mapping is introduced‎, ‎and then under some suitable assumptions‎, ‎which do not involve any information‎ ‎about the solution set‎, ‎the lower semicontinuity of the solution mapping to‎ ‎the parametric‎ ‎set-valued vector equilibrium-like problems are derived by using a density result and scalarization method‎, ‎where the‎ ‎constraint set $K$...

متن کامل

Convergence of Set-valued Mappings: Equi-outer Semicontinuity

The concept of equi-outer semicontinuity allows us to relate the pointwise and the graphical convergence of set-valued-mappings. One of the main results is a compactness criterion that extends the classical Arzelà-Ascol̀ı Theorem for continuous functions to this new setting; it also leads to the exploration of the notion of continuous convergence. Equi-lower semicontinuity of functions is relate...

متن کامل

Continuous Selections and Approximations in Α-convex Metric Spaces

In the paper, the notion of a generalized convexity was defined and studied from the view-point of the selection and approximation theory of set-valued maps. We study the simultaneous existence of continuous relative selections and graph-approximations of lower semicontinuous and upper semicontinuous set-valued maps with α-convex values having nonempty intersection.

متن کامل

Semicontinuity of Convex-valued Multifunctions

We introduce semicontinuity concepts for functions f with values in the space C(Y ) of closed convex subsets of a finite dimensional normed vector space Y by appropriate notions of upper and lower limits. We characterize the upper semicontinuity of f : X → C(Y ) by the upper semicontinuity of the scalarizations σf( · )(y∗) : X → R by the support function. Furthermore, we compare our semicontinu...

متن کامل

On Semicontinuity of Convex-valued Multifunctions and Cesari’s Property (Q)

We investigate two types of semicontinuity for set-valued maps, Painlevé–Kuratowski semicontinuity and Cesari’s property (Q). It is shown that, in the context of convexvalued maps, the concepts related to Cesari’s property (Q) have better properties than the concepts in the sense of Painlevé–Kuratowski. In particular, we give a characterization of Cesari’s property (Q) by means of upper semicon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2002